Source | University of Kansas 

In a novel biotechnological process recently detailed in the Journal of the American Chemical Society, Berl Oakley, Irving S. Johnson Distinguished professor of molecular biology at the University of Kansas (KU, Lawrence, U.S.) and collaborators at the University of Southern California (USC, Los Angeles, U.S.) have developed a chemical procedure for breaking down and removing the matrix from carbon fiber-reinforced polymers (CFRP) such that recovered carbon fiber plies exhibit mechanical properties comparable to those of virgin manufacturing substrates.

One of the major matrix breakdown products is benzoic acid, and to recover additional value, Oakley has developed a genetically modified version of the fungus Aspergillus nidulans that can feast on benzoic acid to produce a valuable chemical compound called OTA (2Z,4Z,6E)-octa-2,4,6-trienoic acid). According to Oakley and his collaborators on the new paper, “This represents the first system to reclaim a high value from both the fiber fabric and polymer matrix of a CFRP.”